
Emotion-Aware and Entitativity-Optimized Socially Invisible Robot
Navigation with Acceptable Interactions

Dipam Patel and Aniket Bera
Department of Computer Science, Purdue University, USA

Abstract— This paper introduces an integrative, real-time
algorithm that harnesses the principles of both entitativity-
based navigation and emotion-aware strategies to guide robots
seamlessly in social environments. Building upon the psycholog-
ical tenets of entitativity and the Pleasure-Arousal-Dominance
(PAD) model, our approach predicts human emotional states
and adjusts robot behaviors to ensure socially invisible interac-
tions. By synchronizing the estimation of group-like perceptions
with emotion detection like facial cues and trajectories, we
aim to achieve efficient navigation while minimizing negative
emotional reactions. Our method is validated in simulated
environments, demonstrating its potential to ensure that multi-
robot systems not only move inconspicuously but also respect
human emotional spaces.

I. INTRODUCTION

Navigating among humans is both a physical and social
challenge. As robots aim to avoid physical collisions, they
must also acknowledge humans as dynamic entities with
emotions and intentions. Recognizing and respecting these
emotions is critical for socially normative robot navigation.
On the other hand, as multi-robot systems become prevalent,
their collective movement might evoke feelings of unease or
threat among pedestrians due to high entitativity, emphasiz-
ing the need for strategies that can mitigate these perceptions.

The proliferation of robots in our daily environments has
opened new challenges in ensuring they move harmoniously
and unobtrusively among humans. Previous works have sepa-
rately highlighted the importance of minimizing robot group-
like perceptions [1] and the necessity of being cognizant of
human emotions for socially acceptable navigation [2]. In
this paper, we bridge these paradigms to pioneer an approach
that simultaneously minimizes the robot’s social visibility
while being emotionally intelligent.

By amalgamating insights from entitativity research with
emotion detection techniques, our method proposes a holistic
framework for robot navigation that prioritizes human com-
fort and emotional well-being. This fusion seeks to ensure
that robots, whether moving individually or in groups, remain
sensitive to the emotional states of humans, adjust their
trajectories accordingly, and avoid patterns that might seem
threatening or unnerving.

Building upon the robust computational techniques and
user studies from prior works, our methodology offers a
novel perspective on robot-human interaction, ensuring that
our mechanical counterparts not only move efficiently but
also remain emotionally attuned and socially inconspicuous.
Figure 1 shows an overview of our approach.

Fig. 1: In this multi-robot system approach, humans are marked
with red trajectories & robots are marked with blue. Our novel
algorithm predicts human emotional states (marked in purple) and
adjusts the robot’s behavior (in green arcs) taking into account
various levels of physical and social constraints.

II. RELATED WORK

Humans inherently perceive social interactions as a critical
aspect of their experience. This involves complex brain
interactions to navigate the social landscape. Delving into
how humans perceive groups reveals unique patterns.

A. The Psychological Perspectives on Group Dynamics &
Emotions

The group context plays a pivotal role in shaping human
behavior, with certain social dynamics leading to adverse
outcomes, particularly in group perceptions [3]. Extensive
research indicates humans often exhibit increased negativity
towards groups than individuals [4], experiencing emotions
such as hostility, fear [5], and threat. These emotional
reactions, especially when directed at both humans and
robots [[6], can have profound implications. Additionally,
the burgeoning field of computer vision and AI has made
strides in emotion recognition from facial expressions, pre-
dominantly using neural networks and datasets like FER
[7]. Liu et al. [8] introduced a novel training model, the
Boosted Deep Belief Network (BDBN), while EmotioNet
catered to a vast spectrum of facial expressions. Furthermore,
pedestrian trajectories, including variations in speed and
direction, provide invaluable insights into their emotional
states and anticipated actions [9] This aspect remains rel-
atively untapped, with limited studies focusing on extracting
emotions from movement patterns.

B. Behavior Modeling of Pedestrians

Modeling pedestrian behavior remains a central theme in
psychology, robotics, and autonomous driving research [10].



Several methods aim to capture the heterogeneous nature
of crowd behaviors, especially those based on personality
traits [11]. The intersection of behavior modeling with the
robot’s ability to navigate socially and emotionally presents
a promising frontier for future advancements.

C. Robot Navigation: Physical and Social Awareness

Historically, robot navigation in pedestrian settings was
heavily centered on physical constraints, including collision
avoidance [12]. Systems have emerged that enable robots to
autonomously navigate urban environments, with some even
eliminating the need for GPS data, as evidenced by Buss et
al. [13]. Fan et al. [14] addressed specific challenges in robot
navigation, such as freezing. Collision-avoidance techniques
have evolved, ranging from potential-based methods [15],
and probabilistic approaches [16], to loop-receding horizon
controls. Faisal et al. [17] notably optimized travel time using
fuzzy logic controllers.

Building on these foundations, there has been a surge
in socially aware robot navigation research [18]. Many
solutions, such as those predicting pedestrian movements
and interactions with robots [19] and [20], derive from
models accounting for social dynamics. Crucially, there’s
been a concerted effort to make robots more in tune with
social norms [21] and [22], taking cues from how humans
adapt their paths based on perceived emotions and societal
conventions. Emphasizing the significance of personal space
and social constraints has also been a focus in this research
[23] and [24].

Our study stands at the crossroads of these developments,
pioneering the integration of facial expressions, trajectory
data, and established navigation techniques for a more nu-
anced, socially-aware robot navigation system.

III. OVERVIEW AND METHODOLOGY

Much of our methodology is heavily inspired by the work
of Bera et al. [2]. This paper serves as an extension to their
work.

A. Emotion Learning

1) Emotion State: Building upon the psychological tenets
of the Pleasure-Arousal-Dominance (PAD) model, our inte-
grative, real-time algorithm categorizes emotions into three
dimensions: Pleasure, Arousal, and Dominance. This study
primarily focuses on the pleasure and arousal dimensions,
thereby classifying into four fundamental emotional states:
happy, angry, sad, and neutral.

To achieve a cohesive understanding of the robot’s sur-
roundings, we utilize parameters primarily sourced from
the robot’s front-facing sensor. These parameters about the
pedestrians and the robot itself are then monitored and
represented:

• Pedestrian state, xp, merges emotion attributes, posi-
tional data, facial features, and velocity. This represen-
tation not only captures the physical location and motion
of the pedestrian but also their emotional state.

xp = [pp,v
c
p,f ,v

pred
p ,Ef ,Et]T

where pp is pedestrian’s position, vcp is the current
velocity of the pedestrian, f is the facial feature vector
derived from the CNN, vpredp is the predicted velocity
or direction of the pedestrian, Ef is the emotion vector
derived from facial features, and Et is the emotion vec-
tor derived from trajectories. While the typical walking
pattern of pedestrians is largely straight with average
speeds of 1.2 to 1.4 meters per second, deviations from
this pattern, such as abrupt changes in direction or
speed, can hint at emotional states such as distress
or urgency. However, this method is supplementary
and primarily used in conjunction with facial emotion
detection to enhance the accuracy of the model.

• Robot’s state, xr, comprises its position and its velocity
data. This information is critical for determining the
robot’s navigation decisions.

xr = [pr,v
c
r,v

pref
r ]T

where pr is the robot’s position, vc
r os the current

velocity of the robot, and vpref
r is the preferred or target

velocity of the robot.
• Emotional labeling, represented by ’e’, provides a pre-

liminary classification of detected emotions and plays
a pivotal role in understanding the pedestrian’s state of
mind. This labeling, ‘e’, is derived using a comparison
among different emotional scores.

e =


happy, if (h > a) ∧ (h > s) ∧ (h > θ)
angry, if (a > h) ∧ (a > s) ∧ (a > θ)
sad, if (s > h) ∧ (s > a) ∧ (s > θ)
neutral, otherwise


In the equation above, h, a, and s represent scores for
happy (high pleasure, high arousal), angry (low plea-
sure, high arousal), and sad (low pleasure, low arousal)
emotions, respectively. The thresholds and conditions
for determining ’e’ were derived from preliminary tests,
where different emotional states were artificially in-
duced and analyzed. The threshold value of θ = 0.55
was empirically determined through iterative testing to
ensure that a detected emotion is pronounced enough to
be taken into account.

2) Data Acquisition: For effective emotion detection, data
is primarily sourced through:

• A dual camera setup, which offers a more compre-
hensive visual feed, capturing the nuances of facial
expressions and trajectories better.

• Facial emotions are deduced from trajectories and fa-
cial features. The trajectory can reveal a lot about a
pedestrian’s state. For instance, erratic movement might
indicate distress or urgency.

3) Emotion Learning Methodologies: The dual approach
of deducing emotions from trajectories and facial features
ensures a holistic understanding:

1) Path Trajectories: This is a novel approach where emo-
tions are deduced based on how people move. Some
emotions result in characteristic movement patterns.



• Variables such as Planning Horizon (how far ahead
the pedestrian is planning), Effective Radius (per-
sonal space around the pedestrian), and Preferred
Speed (usual walking speed) are influential.

2) From Facial Features: Direct emotion detection from
facial expressions.

• A CNN rooted in the Xception architecture
provides state-of-the-art emotion detection. The
depth-wise separable convolutions guarantee effi-
cient and fast processing.

3) Joint Pedestrian Emotion Model: The formula for E,
given by equation (1), is derived from a weighted
average of trajectory-based emotion and facial-based
emotion. The weights α and β were derived empiri-
cally from initial testing to ensure an optimal balance
between the two methods.

E =
αEt + β

(
max(Ef ) + 1/2

)
Ef

α+
⌊
max(Ef ) + 1/2

⌋ (1)

The factor α is a weight parameter that can be adjusted
based on the environment and the perceived accuracy
of each method, while β is a weight parameter that
adjusts the influence of the PAD model in the emotion
vector. This equation ensures that the emotion vector
E is a balanced mix of trajectory-based emotion Et

and facial-based emotion Ef .

B. Entitativity and Social Navigation

1) Entitativity: Entitativity is a groundbreaking concept
pivotal to our integrative, real-time algorithm. It focuses
on the perception of groups as cohesive entities, a cru-
cial factor in determining robot navigation strategies within
groups of pedestrians. Leveraging this understanding, our
approach emphasizes entitativity-based navigation to guide
robots seamlessly in social environments.

The navigational decisions are influenced by various
parameters related to the crowd, robots, and their states.
Systematic definitions of these terms ensure consistency in
algorithm design:

• Emphasis is laid on defining terms like ‘Crowd’, ‘Pedes-
trians’, ‘Robots’, ‘State’, and ‘Motion Model’ which are
central to understanding robot navigation. These terms
cover aspects like the number of entities, their positions,
velocities, and emotional states.

• Parameters such as “Neighbor Distance” (distance from
a robot to the nearest pedestrian), “Radius” (defines the
robot’s personal space), “Group Cohesion” (degree to
which pedestrians are moving together), and “Preferred
Speed” (optimal speed the robot wants to achieve) are
carefully elaborated upon.

2) Entitativity Metric: This metric quantifies the per-
ceived entitativity of a group by observers. It incorporates
emotional responses like ‘Friendliness’ (how friendly the
group seems), ‘Creepiness’ (the degree to which the group
seems unsettling), ‘Comfort’ (level of ease or discomfort

the observer feels), and ‘Unnerving’ (the degree to which
the group seems intimidating). This metric aids the robot in
deciding whether to navigate through a group or around it.

3) Data-Driven Robot Entitativity (EDM): This novel
approach is rooted in the perception of robots as provided
below:

• Study Goals: The primary objective is to understand
how humans perceive robots when they move in groups,
factoring in different movement parameters like speed,
proximity, and alignment.

• Experimental Design: Participants are shown videos
of robots moving in various formations and patterns.
Post viewing, participants assess robots based on their
perceived entitativity attributes.

• Analysis: After collecting the data, an entitativity map-
ping is created, symbolized by the matrix Gmat. This
mapping will aid in predicting human perception of
robot entitativity based on movement parameters.

4) Socially-Invisible Navigation: Our algorithm’s corner-
stone is the concept of socially-invisible navigation, ensuring
that robots move unobtrusively without causing social dis-
turbances. Using principles of entitativity-based navigation
combined with emotion-aware strategies, the robot adjusts
its behavior in real-time. By predicting human emotional
states using the PAD model, our approach tailors the robot’s
movement to maintain the desired invisibility level, promot-
ing harmonious human-robot interactions in shared spaces.

• Robots adjust their actions to match the desired level of
social invisibility. This ensures that the robot’s move-
ment is perceived as natural and doesn’t draw undue
attention.

• The desired level of social invisibility is symbolized by
a scalar ‘s’. The entitativity matrix Gmat assists the
robot in tuning its movement parameters to achieve this
target level.

A(s) =

n∑
i=1

si × gmat,i + γE (2)

where si represents the robot’s state in the shared space,
γ is a coefficient that weighs the influence of the PAD-
based emotional state in the robot’s navigation.

By adjusting the coefficients β in (1) and γ in (2), our nav-
igation algorithm, which is based on potential field methods
for obstacle avoidance, can dynamically alter its behavior
in real-time based on the context. This dynamic adaptation
ensures that the robot maintains optimal social invisibility
while navigating through various pedestrian densities.

The core of our socially invisible navigation is based
on potential field methods, wherein pedestrians and robots
are treated as obstacles with potential fields. The combined
potential field dictates the robot’s navigation decisions. The
strength and influence of these potential fields are modulated
based on the derived emotional states, ensuring that the robot
respects both physical and emotional boundaries.

Conclusively, by fusing emotion detection and the prin-
ciples of entitativity, this research delineates a powerful



model for robot navigation. The overarching objective is for
robots to be emotionally in sync and to maintain the desired
invisibility level. This ensures a harmonious human-robot
coexistence in shared spaces.

IV. RESULTS AND ANALYSIS

A. Participant Interaction Analysis

We had the participation of 8 individuals, instructing them
to emulate and walk exhibiting specific emotions. It is worth
noting that both non-actors and actors have been demon-
strated to effectively represent various emotions through
their walking patterns [25]. Independent of the accuracy of
emotional representation by participants, observations were
recorded. A significant majority reported a comfort level with
the robot’s presence. Intriguingly, participants portraying
sadness felt that the robot allocated a wider berth for them to
pass. Meanwhile, those exhibiting anger felt the robot yielded
their path more promptly. Emotions such as happiness and
neutrality led to less marked differences, although some
participants identified a slight reduction in the robot’s pace.

B. Quantitative Evaluation

In our analysis, we juxtaposed the performance of
our emotion-aware, socially invisible navigation algorithm
against the GVO [26] algorithm, which traditionally disre-
gards proxemic, emotional, or social constraints. Our evalu-
ation focused on two primary metrics:

• Intrusion Instances: We assessed how frequently a
robot without social awareness breached the periper-
sonal, interpersonal, and designated restricted spaces
of pedestrians. Such intrusions are known to cause
emotional discomfort and disrupt pedestrian group dy-
namics.

• Navigation Efficiency: We gauged the additional time
our algorithm-equipped robot necessitated to reach its
end point without impinging on the comfort distances
(hard constraint) and reachability distances (soft con-
straint) of pedestrians. Remarkably, our results, as
shown in Table I, revealed that our robot achieved its
navigation objectives with less than 20% extra time, all
the while respecting the proxemic boundaries of nearby
pedestrians.

Additionally, Table I provides insight into the intrusions
avoided and the performance of our navigation algorithm
by documenting the time required for the robot to compute
socially-invisible trajectories.

C. Active Surveillance Evaluation

The versatility of our algorithm was further evidenced
when applied to active surveillance scenarios. In these con-
texts, pedestrian densities varied from low (1 robot/m2) to
medium (1-2 robots/m2), escalating to high-density environ-
ments (more than 2 robots/m2).

Dataset Additional time Intrusions Avoided Performance
NDLS-1 17.14% 2.69E-04 ms 35
NDLS-2 19.23% 1.94E-04 ms 25
NPLC-1 14.57% 2.04E-04 ms 32
NPLC-3 16.75% 2.88E-04 ms 25

UCSD-Peds1 23.02% 3.13E-04 ms 10
Students 7.42% 0.59E-04 ms 17
seq hotel 9.94% 0.84E-04 ms 11

Street 9.46% 1.02E-04 ms 12

TABLE I: Using our algorithm, the robot can reach its goal within
1m accuracy, while ensuring that the interpersonal space of any
pedestrian does not intrude with < 20% overhead. The pedestrian
trajectories were extracted from the video.

V. CONCLUSION AND LIMITATIONS

In this paper, we present an integrative, real-time algo-
rithm that stands at the intersection of entitativity-based
navigation and emotion-aware strategies to guide robots in
social environments. Building upon the psychological tenets
of entitativity and the Pleasure-Arousal-Dominance (PAD)
model, our approach predicts human emotional states and, in
turn, fine-tunes robot behaviors to maintain socially invisible
interactions. Such an algorithm not only ensures physical
safety but also respects the intricate emotional dynamics of
human beings in shared spaces.

Our work offers a fresh perspective towards robot naviga-
tion in social settings, with a dual emphasis on emotional
awareness and minimizing perceptions of entitativity. By
converging research on entitativity with cutting-edge emotion
detection techniques, we introduce a paradigm where robots
navigate seamlessly while ensuring human emotional com-
fort. The user studies we conducted to solidify the assertion
that the combination of emotional cues and an understanding
of entitativity can substantially bolster the social invisibility
of robots amidst pedestrian crowds.

While our novel methodology brings forth a promising
perspective on human-robot interaction, it is not without its
limitations. Like many prior studies, our algorithm predom-
inantly focuses on motion trajectories, sidelining a plethora
of other social cues and judgments humans naturally lean on
during interactions. Aspects such as appearance, race, class,
religion, gender, and other socio-cultural judgments remain
beyond the purview of our current framework. Moreover,
despite our method harmoniously integrating the PAD model
and entitativity principles, its strong reliance on facial cues
and trajectories might falter in conditions where such data
becomes less accessible or predictable.

For future endeavors, integrating robot appearances within
our conceptual framework offers a promising direction.
Empirical findings suggest that identical robots can induce
heightened perceptions of entitativity. Exploring how manip-
ulating robot appearances might mitigate such perceptions
could be instrumental. A more personalized approach, taking
into account the perceiver’s personality and past experiences
with robots, could refine robot navigation strategies tailored
to individual human profiles.
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